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Abstract 

In many arid and semi-arid regions, drought stress continues to be the primary factor limiting crop 

and ecosystem productivity, highlighting the implications of climate change. Arbuscular 

mycorrhizal fungi (AMF) are a flexible group that forms plant–fungal symbiotic relationships that 

mitigate the effects of drought stress. Developing innovative management techniques to lessen the 

negative consequences of drought stress is imperative in order to improve ecosystem health and 

food security. By causing oxidative stress, altering membrane integrity, plant water relations, 

nutrient uptake, photosynthetic activity, photosynthetic apparatus, and anti-oxidant activities, 

drought stress dramatically affects plant growth and development. Plant resistance to drought stress 

can be considerably increased using AMF. AMF helps plants thrive under drought stress by 

preserving membrane integrity and enhancing plant water levels, nutrient and water uptake, and 

water-use efficiency (WUE). AMF also lessens the buildup of reactive oxygen species (ROS) by 

boosting antioxidant activities and gene expression that give plants resistance against drought-

induced oxidative stress. It also enhances photosynthetic efficiency, osmolytes, phenols, and 

hormone accumulation. This review discussed the various roles that AMF plays in the various ways 

that plants react to drought stress. We have given a thorough overview of the various pathways that 

AMF mediates to help plants develop drought resistance. 
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Introduction 

In addition to providing food for humans and 

other animals and serving as the primary 

source of solar energy and organic carbon in 

ecosystems, plants are essential for 

maintaining the planet's biodiversity and 

regulating the climate (Prajapati et al., 2023). 

In the current context of anthropogenic global 

warming, forest and cultivated plants must 

adapt to the new conditions or perish 

(Kijowska-Oberc, et al., 2020). To meet these 

challenges, plants have evolved complex 

mechanisms that involve a wide range of 

signaling pathways and interactions with 

other organisms, including microbes (Cheng, 

et al., 2019). 

Low soil water supply and high atmospheric 

water demand are the two main drivers of 

drought, a complex natural climate 

phenomenon that can pose serious risks to 

agricultural productivity and the ecosystem 

(Madadgar et al., 2017, Zhao et al., 2021). 

Drought can also cause widespread tree 

mortality and water shortages (Trugman, et 

al. 2021). Drought is one of the threats that 

harm the ecosystem that is most widely 

recognized (Vicente-Serrano, et al., 2020). It 

happens whenever there is a substantial 
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rainfall deficit that results to hydrological 

imbalances and impacts the land's productive 

processes. Practically all climate areas 

experience droughts, whether the mean 

annual rainfall is high or low (Ault, 2020). It 

may have negative effects on human society, 

the environment, and agricultural production 

(Haile et al, .2020). Drought is considered a 

unique form of natural disaster that differs 

from others because of its gradual 

development (Staupe-Delgado and Rubin 

2022). According to (Liu et al. (2018), a 

drought tends to start slowly, have long-

lasting impacts that gradually worsen, and 

continue for a considerable amount of time 

even after it has ended. Between the early 

1960s and 1986, the National Aeronautics and 

Space Administration (NASA) observed 

persistent drought events that caused about 

900,000 km2 of former savanna grassland in 

the region of Africa to be badly decertified 

(Eze, 2018)). Furthermore, according to 

Shukla, et al., (2021), one-third of Africans 

reside in regions that are susceptible to 

drought. The drought has turned into a 

recurring occurrence. Drought stress, one of 

the major abiotic stresses, has a significant 

impact on crop production and threatens 

global food security (Begna, 2020). Changes 

in savanna structure, composition and 

function as a result of ongoing and future 

climate change can have major implications 

for human wellbeing and ecosystem process 

(Mishra, and Young, 2020). Drought stress 

profoundly influences arid and semiarid 

native seed germination, seedling 

development and establishment in natural 

habitats (Seleiman, et al., 2021).  

Plants cope with drought deficit conditions by 

acquiring drought avoidance and/or drought 

tolerance mechanisms, which include 

morphological, physiological, and 

biochemical responses (Yang et al and Chen, 

2021). Water scarcity has a negative impact 

on many aspects of plant physiology 

(Seleiman, et al, 2021). For example, it 

decouples photosynthesis, disrupts enzyme 

structure, and reduces nutrient uptake and/or 

transport to the shoot, causing a hormonal and 

nutritional imbalance in the plant (Liao, et al., 

2023). Furthermore, drought stress causes 

osmotic stress, which can lead to turgor loss, 

inhibiting plant growth and development 

(Ozturk, et al, 2021). Drought stress also 

causes the production of reactive oxygen 

species (ROS), which causes oxidative 

damage to carbohydrates, protein synthesis, 

and lipid metabolism. 

Soil drought stress has become the primary 

limiting factor for plant growth in arid and 

semi-arid regions due to ongoing climate 

change (Naorem, et al, 2023).  Plant-

associated microbes, such as arbuscular 

mycorrhizal fungi (AMF), have the ability to 

regulate physiological and molecular 

responses to drought stress, and they have a 

strong ability to cope with drought-induced 

oxidative damage via enhanced antioxidant 

defense systems (Wang, et al., 2023). In 

arbuscule-containing root cortical cells, AMF 

causes a short-lived oxidative burst (Kobae, 

2019). To scavenge ROS, AMF modulates a 

fungal network in enzymatic and non-

enzymatic antioxidant defense systems (Zou, 

et al., 2021).  

Plant and fungal metabolites facilitate and 

guarantee partner recognition, colonization, 

and the development of the symbiotic 

association in the myriad interactions that 

take place in the rhizosphere between plants 

and their AMF symbionts. This review 

focuses on the alterations in metabolites that 

arise from the colonization and establishment 

of AMF in plants. 

 

Methodology. 

Research publications were from the Web of 

Science, Google, Google Scholar, Science 

Direct, Springer, Wiley, Springer, and 

Science. The following keywords were used 

for searching literature: arbuscular 

mycorrhizal fungi and drought stress or AMF 

or AMF-induced or AMF inoculation and 

drought stress/alleviation/tolerance or stress 

mitigation. Other keywords include 

physiological mediation, biochemical 

mediation and morphological mediation. 
 

Direct effect of droughts on savanna tree 

mortality 

Global vegetation is predicted to be 

significantly impacted by more frequent and 

severe droughts brought on by climate change 

(Xu, et al., 2019). Yet, studies conducted so 
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far have concentrated on how susceptible 

trees are to aridness in forests, in savannas, 

where a thin covering of trees coexists with 

grass, little is known about trees and moisture 

deficit. Despite being widely distributed 

throughout the world and making up a 

substantial portion of tropical land area 

(Raven, et al., 2020), savannas have gotten 

significantly less attention than forests in 

physiological investigations and globally 

syntheses of drought susceptibility of trees. 

Predictions about how severely a drought 

would harm trees are complicated by these 

tree-grass interactions, which are frequently 

mediated by fire and herbivory (Case et al., 

2019). During drought plants respond 

physiologically and structurally to prevent 

excessive water loss according to species-

specific water uses strategies which have 

consequences for carbon uptake by 

photosynthesis and release by total ecosystem 

respiration (Li et al., 2020). In savannas, 

potential effects of drought are uncertain 

(Sankaran, 2019). Drought is obviously a 

physiological challenge to savanna trees, with 

the potential to stunt or even kill them. 

Regardless of how dry their surroundings are, 

savanna trees may have limited hydraulic 

safety margins, much like trees in other 

biomes (López et al., 2021). Some scholars 

have suggested that drought has been 

underestimated as a type of natural episodic 

disturbance limiting tree populations in these 

systems (Lloret, and Batllori, 2021). Severe 

droughts have been shown to cause 

significant mortality in some cases of savanna 

trees, both historical and recent (Smit and 

Bond, 2020). Tree species also differ 

inherently in their ability to withstand and 

recover from droughts. Tree mortality during 

droughts can arise from one or more non‐

exclusive mechanisms including hydraulic 

failure and loss of vascular transport capacity 

as a result of xylem cavitation, carbon 

starvation as a result of depletion of 

carbohydrate reserves, and increased 

susceptibility to herbivore and pathogen 

attacks (Salmon et al., 2019). Hydraulic 

failure occurs when droughts are particularly 

severe, causing the xylem and rhizosphere to 

cavitate (become filled with air‐pockets), 

impeding water flow and eventually resulting 

in desiccation and death (Peters 2019). Trees 

may limit carbon fixation during less severe 

but longer-lasting droughts by closing their 

stomata to prevent hydraulic collapse. This 

can lead to carbon starvation over time when 

trees are unable to meet their ongoing 

metabolic requirement for carbohydrates 

(Tomasella et al., 2019). The xylem water 

potentials at which cavitation happens varies 

depending on the species and is mostly 

dictated by the anatomical characteristics of 

the xylem, such as the pit membrane's 

porosity and the conduits' diameter, length, 

connectedness, and density (Zhao et al., 

2020). 

Drought in savannas can have a significant 

impact on tree survival and inhibit canopy 

closure.  It is becoming more and more crucial 

to take into account how drought affects the 

vegetation structure of savannas as future 

drought severity and frequency are expected 

to rise (Jones et al., 2022).. 

Mycorrhizal fungi-mediated tolerance to 

Drought 

Eighty to ninety percent of vascular plant 

species have symbiotic relationships with soil 

microorganisms known as arbuscular 

mycorrhizal fungi (AMF) (Genre et al., 

2020). They are widely distributed throughout 

the world's ecosystems, which are mostly 

determined by the range of recognized plant 

hosts (Ma et al., 2023). AMF are categorized 

as belonging to the three classes 

(Glomeromycetes, Archaeosporomycetes, 

and Paraglomeromycetes) in the phylum 

Glomeromycota and subkingdom 

Mucoromyceta (Lakhdar et al., 2023). AMF 

comprise around 250 species, 25 genera, and 

11 families (Alrajhei et al., 2022). 

Glomeromycota are obligatory symbionts that 

depend on their host plants' carbon substrates 

up to 20% of plant-fixed carbon for survival 

(Prasad 2023). In exchange, the fungus 

enhances the availability of water and 

nutrients, including nitrogen and phosphate, 

to the host plant via the root-apoplast contact, 

arbuscules, and extraradical and intraradical 

hyphae (Diagne et al., 2020). This symbiosis 

has existed from the earliest land plant 

emergence, about 600 million years ago, 

according to molecular and fossil records 
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(Uwamungu et al., 2022). Most likely the 

most common beneficial relationship between 

plants and microbes is the Arbuscular 

mycorrhizal (AM) symbiosis (Noceto et al., 

2021). According to many studies, they 

support several critical ecological processes 

and are critical for plant nutrition and growth 

under stress (Wahab et al., 2023). 

According to Tedersoo et al. (2020) 

mycorrhizal symbiosis is the formation of a 

close, primarily mutualistic relationship 

between mycorrhizal fungus and plant roots. 

AMF are the most prevalent type of 

mycorrhizal fungi, found in soils worldwide 

(Madawala 2021). The plant and the fungus in 

this symbiosis identify one another through 

interacting chemical signals (Khalid and 

Keller 2021). To be more precise, 

strigolactones released by plant roots promote 

branching and pre-symbiotic hypha 

metabolism and are regarded as one of the 

most important elements in the established 

(Mitra et al., 2021).  

Water scarcity is one of the most serious 

abiotic pressures threatening ecosystem 

development and output throughout the world 

(Gavrilescu 2021). Water stress produces 

morphological, biochemical, physiological, 

and molecular changes in plants that reduce 

output (Kumaret al., 2019). Plants, on the 

other hand, are frequently connected with 

microorganisms that can modify plant 

responses to water scarcity in nature (Zia et 

al., 2021). AMF are among the most common 

beneficial microorganisms, colonizing the 

majority of plants. Aside from improving 

plant nutrition, AMF has been shown to boost 

plant performance under water shortages 

(Begum et al., 2019). 

This review aims to provide an overview of 

the current understanding of AMF 

relationships with savanna tree species, 

specifically the mechanisms involved in 

mediating the impacts of drought on host 

plants. The biochemical process, the 

morphological mechanism, and the AMF 

physiological drought mitigation mechanism.  

Physiological mediation  

Water status  

Water scarcity in the soil and atmosphere 

increases stress on vegetation and affects 

future agricultural productivity and forest 

survival, particularly in the face of climate 

change (Jones et al., 2020). Recent research 

has revealed soil drying as a main source of 

global transpiration reduction, which is a 

more stressful factor than vapor pressure 

deficit (Liu et al., 2020). The hydraulic 

conductivities of the various elements (soil, 

root-soil interface, root, xylem, and leaf) 

forming the soil-plant continuum influence 

the leaf water potential (Pou et al., 2022). The 

leaf water potentials at which stomata close 

depend on belowground hydraulic properties 

(root, soil, and their interface) (Abdalla et al., 

2022).  

Bourbia et al. (2021) demonstrated that in 

both herbaceous and woody species, a 

decrease in root hydraulic conductivity was 

associated with stomatal closure. To deal with 

the loss in conductivity at the root-soil 

interface, plants evolved a variety of 

mechanisms (Hallett, et al., 2022). 

AMF symbiosis, which occurs naturally 

between fungal and most plant species, has 

been shown to improve plant water 

interactions, particularly in drought-stressed 

conditions (Madouh, and Quoreshi, 2023). 

AMF colonization can trigger a variety of 

physiological responses to drought stress, 

including stomatal conductance sensitivity, 

CO₂ absorption, and declines in relative water 

content; additionally, AMF inoculation is 

expected to improve leaf water potential 

(Chandrasekaran  et al., 2019). 

Water uptake by the roots from the soil and its 

circulation throughout the plant parts are 

critical for all physiological developments. 

Water moves through membranes in a 

gradient-driven flow, which is regulated and 

mediated by water channels known as 

aquaporins (AQPs) (Likhtenshtein and 

Likhtenshtein, 2021). AQPs are pore-forming 

integral membrane proteins that belong to the 

family of major intrinsic proteins (MIPs) and 

are found in all living cells/organisms, 

forming huge families in plants. AQPs are 

classified into five subfamilies based on 

amino acid sequences: tonoplast intrinsic 

proteins (TIPs), plasma membrane-intrinsic 

proteins (PIPs), and NOD26-like intrinsic 

proteins (NIPs), which were discovered in 

legume symbiosomes but also exist in the 

endoplasmic reticulum and plasma 
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membrane, small basic intrinsic proteins 

(SIPs) found only in the endoplasmic 

reticulum (ER) of dicot as well as 

uncharacterized intrinsic proteins (XIPs) 

found in the plasma membrane (Bahadur  et 

al., 2019). Some PIPs in plant roots show 

differential expression of genes coding for 

AQPs in response to AMF and drought stress. 

According to research, the AM symbiosis 

modulates the expression of critical AQP 

genes, as well as the tightly controlled root 

plant hydration status, hydraulic conductivity, 

and tolerance to water scarcity (Quiroga et al., 

2019). In AM fungal-inoculated tomato 

plants, an enhancement in the water transport 

capacity of AMF roots, correlated with 

overexpression of NIP AQP-encoding gene 

(LeNIP3;1) (Wang  et al.,2023). Conversely, 

in another study a NIP AQP gene (LjNIP1) 

was up-regulated specifically in the 

arbuscule-containing cells in mycorrhizal 

roots of Lotus japonicus (Quiroga, 2020). In 

contrast, under drought stress, Funneliformis 

mosseae exhibited higher expression levels of 

root PtTIP1;2, PtTIP1;3, and PtTIP4;1 of 

Poncirus trifoliata L. and lower expression 

levels of root PtTIP2;1 and PtTIP5;1 (Jia-

Dong  et al., 2019). It shows that root TIPs 

genes revealed diverse responses to 

mycorrhization, representing the multiple 

roles of AMF in water absorption under water 

stress. 

Plant assimilate production is significantly 

reduced by drought stress, which also has a 

negative impact on photosynthesis. Drought 

stress decreases photosynthesis by rising ROS 

generation and lowering chlorophyll 

concentrations (Wahab et al., 2022). Drought 

stress inhibits the synthesis of RuBisCO and 

increases the activity of the enzyme 

chlorophyllase, which degrades chlorophyll, 

thereby causing a decrease in photosynthesis 

(Sharma et al., 2020). On the other hand, 

under drought stress, AMF significantly 

raised the chlorophyll concentrations and 

maintained improved RuBisCO synthesis, 

which resulted in a notable rise in 

photosynthetic rate (Wahab et al., 2023). 

With increased stomata conductance brought 

about by AMF, more CO₂ can enter plant leaf 

tissues, increasing PS-II efficiency and, 

ultimately, photosynthetic efficiency under 

drought stress (Jajoo, and Mathur, 2021). 

Higher chlorophyll production under drought 

stress is maintained by AMF, which 

significantly reduces chlorophyllase activity 

while preserving the activity of genes and 

enzymes involved in chlorophyll synthesis 

(Begum et al., 2019b).  

Morphological mediation. 

Calleja-Cabrera et al. (2020), during the 

initial stages of climatic change, there is a 

steady reduction in shoot growth and 

maintenance of root growth, which leads to an 

increased root/shoot ratio. Osmotic stress and 

ion toxicity are the results of salt and ion 

accumulation in the upper soil layers during 

severe or moderate drought conditions 

(Zhang et al., 2022). Loose and wrinkled 

plant cell walls are the result of a decrease in 

the turgor pressure of plant cells when 

drought stress increases (Natonik-Białoń et 

al., 2020). Plants that experience these 

biophysical consequences eventually lose 

water content and fresh weight, and their 

leaves become smaller and fewer in numbers 

(Bhattacharya and Bhattacharya, 2021). 

Under mild to moderate drought, roots 

undergo structural changes and modify their 

resource allocation (water and nutrients) to 

minimize dehydration (Seleiman et al., 2021). 

Research revealed that AMF colonization can 

modify morphological adaptation to improve 

the host plant's resistance to drought (Liu et 

al., 2023). Previous research during drought 

acclimation of AM rose plants showed 

reduced cuticle weight and less epicuticular 

wax in their leaves compared to non-AM 

plants (Hornstein, 2022). The inclination to 

abscise leaves would be the reason for the 

absence of wax in AM roses during drought 

adaptation. According to Boutasknit et al. 

(2020) mycorrhizal plants recover from 

wilting more quickly than non-mycorrhizal 

plants during drought recovery. However, 

stomatal density and guard cell size were 

unaffected by AMF inoculation in 

comparison to non-AMF treatments 

(Dehkordi et al., 2021). Apart from leaf 

morphological adaptation, mycorrhization 

also employs root morphological adaptation 

as a strategy during drought stress. Under 

well-watered and drought-stressed 

conditions, research revealed considerably 
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greater root total length, projected area, 

surface area, average diameter, volume, and 

number of first-, second-, and third-order 

lateral roots in AMF trifoliate orange 

seedlings compared to non-AMF seedlings 

(Meena et al., 2022).. Additional 

morphological investigations demonstrated 

modifications to the palisade's plant vascular 

architecture, starch storage, and 

photosynthesis (Liu and Wei, 2021).  

The root morphological alterations caused by 

AMF may be attributed to the control of 

endogenous polyamine metabolism and 

phytohormone equilibrium, particularly the 

activation of root putrescine synthetases 

through arginine and ornithine decarboxylase 

as well as root indole-3-acetic acid (IAA) 

(Karunanantham  et al.,2022).. 

Biochemical mediation  

During the process of AMF symbiosis against 

drought stress, a variety of signaling 

molecules, such as ethylene, ABA, 

cytokinins, salicylic acid (SA), jasmonic acid 

(JA), and auxin, have the capacity to function 

as phytohormones under certain 

circumstances (Gontia-Mishra et al., 2020).   

Biochemical signaling molecules are emitted 

by both symbionts prior to any physical 

contact, triggering the other to start first 

reactions (Boyno and Demir, 2022). 

Strigolactones are a class of carotenoid-based 

phytohormones that are secreted by plants to 

regulate several aspects of their development 

(Boyno et al., 2023). During the pre-contact 

stage, strigolactones are released into the 

rhizosphere, where these labile signaling 

molecules draw AMF to recognize a 

particular host in their region. When AMF 

recognize strigolactones, they initiate 

oxidative metabolism, which improves 

hyphal branching and growth and leads to 

physical engagement with host plant roots, 

ultimately leading to symbiosis (Mitra et al., 

2021b).  

There are two more pronounced biochemical 

mechanisms for AMF drought stress 

mediation. The first process is the direct 

absorption of water by hyphae and its 

subsequent transport to the host plant, which 

increases the water content and scavenges the 

production of ROS, including superoxide 

anion radical (O₂·−), hydrogen peroxide 

(H₂O₂), hydroxyl radicals (·OH), and singlet 

oxygen (¹O₂) (He et al., 2020). In plants, 

oxidative stress is accompanied by drought 

stress and arises from the generation of ROS 

(Sachdev et al., 2021). However, a substantial 

amount of research indicates that the build-up 

of ROS under drought stress results in 

structural damage to proteins, carbohydrates, 

lipids, and DNA, which eventually results in 

membrane damage and cell death (Singh  et 

al., 2022).  

The second process involves an AMF 

association-induced increase in the 

production of both enzymatic and non-

enzymatic antioxidants (Afshari et al., 2022). 

The function of both enzymatic and non-

enzymatic antioxidant in plants is to control 

and scavenge ROS. Ascorbate peroxidases 

(APX), superoxide dismutase (SOD), catalase 

(CAT), glutathione reductase (GR), guaiacol 

peroxidase (G-POD), and glutathione 

peroxidase (GPX) are examples of enzymatic 

antioxidants. Among the non-enzymatic 

antioxidants include tocopherol, flavonoids, 

carotenoid, ascorbate (ASC), and glutathione 

(GSH) (Ho et al., 2020). Increased 

transcription levels of enzymatic antioxidants 

and/or components of ascorbate and 

glutathione biosynthesis have been found to 

be associated with the influence of AMF 

symbiosis on antioxidant capacity, indicating 

the intricate transcriptional regulation of the 

antioxidant machinery (Zou et al., 2021). 

There is still much to learn about the 

fundamental processes generating the 

signaling molecules that interact with the 

plant-fungus interaction. AMF symbiotic 

plants produce more ABA, a phytohormone 

known as the "abiotic stress hormone," during 

droughts in order to deal with the 

corresponding stresses (Karunanantham et 

al., 2022). Many investigations have 

emphasized the mechanistic insights into the 

increased ABA production in the AMF host 

plant to provide tolerance against drought 

stress (Mathur and Roy 2021). 

AMF triggers ABA production in response to 

drought stress, raising ABA levels in plants 

and encouraging stomatal closure to reduce 

transpiration water loss (Ilyas et al., 2021). 

Since sugar is one of the primary sources of 

carbon supplied by the plants to the AMF, it 
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plays a significant regulatory role in the 

symbiotic relationship between the two 

organisms (Salmeron-Santiago et al., 2021). 

From 26–29 days after germination, hexoses, 

including glucose, were observed in the roots 

during the AMF colonization. But, the non-

mycorrhizal roots showed higher sugar levels 

than the mycorrhizal roots at 40 days after 

germination (Gupta et al., 2021). Abiotic 

stress-stricken plants showed an increase in 

sugar content, especially when 

associated with AMF. Sugar and lipid 

upregulation during water stress were 

observed in AMF plants, which was in line 

with the plants' increased biomass (Yadav et 

al., 2023). Similar sugar accumulations have 

been observed in plants colonized by AMF 

under various abiotic stress conditions. 

Different AMF species may accumulate 

sugars differently. As an illustration, trifoliate 

orange seedlings cultivated in drought had 

greater levels of sucrose, glucose, and 

fructose in their leaves when inoculated with 

Paraglomus occultum as opposed to 

Funneliformis mosseae (Posta and Duc, 

2020).  

As the building blocks of proteins and 

enzymes, amino acids also serve as signaling 

molecules and help plants cope with 

environmental stress (Ali et al., 2019). The 

AMF spores can use N from the soil to 

synthesize amino acids, or they can directly 

extract the amino acids from the soil (Jansa et 

al., 2019). When compared to non-

mycorrhizal plants, arbuscular mycorrhizal 

plants absorbed more amino acids from the 

soil (Kaur and Suseela 2020)]. Previous 

research has shown that AMF colonization in 

plants can result in an increase, decrease, or 

no variation in the amount of amino acids 

present (Kaur and Suseela  2020). 

Proline is one of the important osmolytes that 

plants accumulate to counteract the effects of 

drought stress. It does this by stimulating the 

activity of various antioxidant enzymes, such 

as catalase, peroxidase, and superoxide 

dismutase, among others. Proline also has a 

notable ability to bind and hydrate enzymes, 

which helps to stabilize and protect 

macromolecules (Bogati and Walczak, 2022) 

 

 

Conclusion 

Plant morphological, physiological, and 

biochemical responses are disrupted by 

drought stress, which results in a significant 

reduction in plant growth and development. 

Nonetheless, AMF significantly enhances the 

growth and development of plants and 

protects them from the damaging effects of 

aridness. AMF inoculation preserves the 

integrity of the membrane and the water status 

of the plant, guards the photosynthetic 

apparatus from oxidative stress caused by 

aridity, and enhances the synthesis of 

photosynthetic pigments, all of which 

promote better plant growth and development 

under drought stress. Plant performance in 

conditions of water deficiency is significantly 

improved by AMF, which also enhances the 

accumulation of osmolytes, hormones, gene 

expression, and antioxidant activities. AMF-

mediated improvements in plant development 

under DS are mostly due to these and other 

factors, including increased aquaporin 

expression, improved water uptake, and 

increased water usage efficiency. 

There are still numerous unsolved concerns 

regarding the role of AMF in reducing the 

negative impacts of drought stress, despite 

recent advancements in this area. Areas of 

further research may include Identification of 

AMF species that are more effective in 

drought stress alleviation, elucidation of the 

molecular mechanisms underlying AMF-

mediated drought stress tolerance in plants 

and development of AMF-based 

biofertilizers that can be used to enhance crop 

productivity under drought stress conditions. 
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