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Abstract 

An attacker can copy malicious code from one memory location to another to spread a worm attack, 

resulting in malicious code stored in a contagious memory region. In the event of malware repeating 

the same process to the neighbouring sensor nodes, the memory efficiency of the infected node can 

affect the propagation dynamics of the worm attack. However, the existing worm propagation 

models do not consider the memory efficiency of the infected nodes while mitigating worm 

propagation. Consequently, this work proposed a Susceptible-Infectious-Abandon-Quarantine 

(SIAQ) model to mitigate worm propagation based on memory efficiency. To achieve this, the 

SIAQ model inspired by the epidemic model can mitigate the worm propagation by isolating 

infected memory-efficient nodes from the wireless sensor network (WSN). In this regard, the 

infected memory-efficient nodes are subjected to a sleeping mode. In a sleeping mode, the infected 

memory-efficient nodes cannot further interact with the other nodes in a WSN. Finally, the basic 

reproduction number is obtained to serve as a benchmark in determining the model's performance 

on the infection peak value. Based on the numerical simulation conducted, the result of the proposed 

SIAQ model outperforms the previous SIQR model at about 40% in mitigating worm propagation 

at the worm-endemic equilibrium state. Consequently, the proposed model can serve as a basis for 

assisting in planning, design, and defence of such networks from the investigator's point of view. 
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Introduction 

Advancement in sensor technology has 

revolutionized traditional wired devices into a 

wireless sensor network (WSN). The 

emergence of WSNs exhibits promising 

potential in developing new technology such as 

smart homes, biological monitoring, battlefield 

surveillance, and target tracking (Wang et al., 

2010). WSNs, as shown in Figure 1, are made 

up of small-sized, cheap, low-energy and 

multi-functional devices commonly referred to 

as sensors that are deployed to extract data 

from an environment or monitor an incident 

(Akyildiz et al.,2002). In this regard, each 

wireless sensor node is equipped to sense, 

measure, and gather data from the surrounding 

environment. After that, the sensor data can be 

transmitted to the user (Khanh, 2016). 

Although WSN exhibits promising 

applications in various fields, the weaknesses 

associated with the sensor nodes can result in 

an aggressive attack from perpetrators. As 

previously shown, the attacker can exploit 

different mechanisms of sensor nodes and 

spread malicious codes throughout the entire 

network without physical contact (Giannetsos 

et al., 2009).
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Figure 1. Sensor network communication structure (Khanh, 2016). 

 

Consequently, this can lead to a worm attack 

that can be achieved by exploiting memory-

related vulnerabilities. According to 

Giannetsos et al. (2009), the vulnerabilities of 

sensor nodes in which the same program 

images can be executed through various sensor 

nodes can lead to a self-propagating packet for 

injecting malicious code. As such, multi-worm 

spreading will become the main attack way in 

large-scale WSNs in the future (Wang et al., 

2010).   

 

Related Work 

While highlighting factors that differentiate 

worm propagation in an Internet-based 

network from WSN, Wang et al. (2010) argued 

a need to develop a novel formal model. The 

formal model should describe the dynamic 

process of worm propagation that is 

distinguished from Internet worm propagation. 

Consequently, Wang et al., (2010) proposed an 

EiSIRS model that can precisely describe the 

process of worm propagation in WSN. 

Besides, a necessary condition for a worm to 

spread in a WSN was theoretically derived 

from incorporating working and sleeping states 

as influential factors. Based on these factors, 

various states were defined that include the 

Susceptible working node(S); in these states, 

nodes have not been infected by any nodes, 

Susceptible sleeping class (S') nodes in this 

class the nodes have not been infected and are 

sleeping with an assumption that worm will not 

try to infect them, the reason is that these nodes 

cannot communicate with their working 

neighbours. The next class is the Infectious 

working node (I); this class consists of nodes 

affected by worms and can infect some 

susceptible nodes. Another class is Infectious 

sleeping nodes(I'), which are infected but 

remain in sleep mode and cannot infect other 

nodes. The next class is the recovered working 

class(R), consisting of nodes that recover from 

the infection and currently working with the 

possibility of reinfections by neighbouring 

infected working nodes. And recover sleeping 

class(R') classes are recovered but remain in 

sleeping states and worms cannot try to affect 

them. Lastly is the Dead node class (D). 

In the D class, nodes have exhausted energy 

and cannot be infected by the worm. By 

associating these classes with various WSN 

parameters, the simulation results indicate that 

the dynamic characteristics of worm 

propagation are related to energy consumption, 

network topology, sleep, and the work 

interleaving schedule policy of large scale 

WSN. However, how to enhance the model to 

automatically adjust the communication range 

of nodes to control the worm propagation 

remains a challenge. To control and mitigate 

worm propagation in WSN, Kechen et al. 

(2012) studied the worm propagation dynamic 

of WSN with four distinct node deployment 

patterns and proposed a Select Immune 

Mechanism. The Select Immune Mechanism 

propagates anti-worm packets to suppress the 

worm propagation in WSN. The WSN is then 

classified into susceptible(S), Infected(I), 

Immune (E), and Dead nodes (D) sensor nodes. 

By conducting a simulation to check the 

mechanism effects on various nodes, it was 

found that worm propagation could be 

restrained by adding fewer efficient monitored 

nodes. 

In similar trend, Mishra and Keshri., (2013) 

studied the attacking behaviour of possible 
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worms in WSN using a compartmental 

epidemic model. The model is proposed with 

Susceptible-Exposed-Infectious-Recovered-

Susceptible and Vaccination compartments 

(SEIRS-V) to describe the dynamics of worm 

propagation with respect to time in WSN. The 

model was subjected to mathematical to 

determine the basic reproduction number R0 to 

understand the propagation and fading of the 

worms in the wireless sensor network (WSN). 

Consequently, the outcome of the simulation 

reveals that proper vaccination of the sensor 

nodes will reduce the susceptibility of nodes 

towards the worm attack. Similarly, Mishra 

and Keshri., (2014) observed that worms in 

WSN can be contained more effectively by 

quarantining nodes in a group that has 

exhibited highly infectious behaviour. 

Feng et al. (2015) proposed an improved 

Susceptible -infectious- recover- susceptible 

(SIRS), emphasising communication radius 

and distributed density of nodes and assuming 

a uniform distribution of nodes in a 2D space. 

Finally, the numerical simulations show that 

decreasing the value of communication radius 

or reducing the distributed density of nodes 

prevents worms from spreading WSNs 

effectively. 

In the work of Khanh(2016), based on 

epidemic theory, a susceptible - infectious- 

quarantine - recovered (SIQR) model was 

proposed to describe the dynamics of worms 

propagation with quarantine in the wireless 

sensor network. Similarly, mathematical 

analysis shows that the dynamics of the spread 

of worms are determined by their threshold. If 

the worm-free equilibrium is globally 

asymptotically stable, the worm-endemic 

equilibrium is globally asymptotically 

unstable. A numerical investigation is carried 

out to confirm the analytical results. However, 

based on the results of parameter analysis, 

some effective strategies for eliminating 

worms are suggested that will decrease the 

contact and transformation parameters of the 

model can slow down the malware 

propagation. While investigating the effect of 

mobile actuators on worm propagation in 

WSN, Wang et al., (2017) proposed a 

microscopic mathematical model to describe 

the propagation dynamics of the sensor worm. 

The model follows the state transition scheme 

of a typical susceptible-infected (S-I) infection 

model but can microscopically compute the 

prior probability of each sensor being infected 

by the worm. The simulated results and 

comparison with the other models generated 

different results from various density values. 

Based on their findings, the involvement of 

infected mobile actuators reinforced worm 

propagation across a diverse number of tests. 

Singh et al. (2018) studied the effect of worm 

propagation with various values of 

communication radius and node distributed 

density. While extending the SIRS model of 

Feng et al., (2015), exposed and vaccination 

classes were added to the SIRS model. Hence, 

the authors developed a new model called the 

SEIRV model, and its stability was checked 

using the stability theory of differential 

equations. Numerical simulation of the SEIRV 

model was conducted with different 

communication radius and node density values 

while other parameters remain fixed. 

Comparing the simulation result with the 

existing model, the number of infectious sensor 

nodes responses to changes with the changes in 

communication radius and node density values 

in the proposed model. However, the number 

of infectious nodes remains unchanged in the 

existing model with the changes in 

communication radius. Also, it was found that 

the proposed scheme has a few numbers of 

infectious nodes for every communication 

range. With the previous models focusing on 

worm propagation, few exceptional models 

Acarali et al., (2019), Ji et al., (2019), Jerkins 

and Stupiansky, (2018) and Yin et al., (2019) 

have their work focusing on IoT WSN-based 

botnet propagation. 

In any case, while previous models do consider 

various parameters of WSN in modelling 

worm propagation, the memory efficiency of 

the infected nodes has not been previously 

integrated in modelling worm propagation. As 

highlighted, the attacker exploits the memory 

of the infected node to run, execute, and store 

the malware packet for self-propagation to the 

neighbouring sensor nodes. Besides, a node's 

memory efficiency determines the free 

memory space that can speedily process 

malware packets and minimize packet loss 
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during worm propagation. However, the 

memory efficiency of sensor nodes varies in 

WSN, some nodes have higher memories than 

the others. Hence, there is need to analyze and 

mitigate worm propagation in the perspective 

of node’s memory capability.   Therefore, in 

this paper, we proposed a Susceptible-

Infectious-Abandon-Quarantine (SIAQ) model 

to isolate infected nodes based on their 

memory efficiency to decrease the worm 

propagation in WSN. 

Proposed Model 

A Susceptible-Infection-Abandon-Quarantine 

(SIAQ) model is proposed, a novel model that 

will consider the node's processing capabilities 

for worm propagation. The model assumes the 

existence of an infected node in a WSN 

environment. Then the model will measures 

the transient behaviour of the infection 

concerning the worm propagation. Our focus is 

particularly on memory availability that 

determines infected nodes abandon rate based 

on their memory capability to propagate the 

malware packet. To understand the 

propagation and mitigation of worm attacks, 

respectively, clear assumptions are stated as 

follows: 

Dynamic network with mobility of nodes that 

is, nodes can be added/removed from the 

network. A random network deployment. 

Homogeneous sensor nodes with different 

memory statuses at a particular time.  

SIAQ has similar emerges from the epidemic 

model with add-on classes A and Q to stand for 

the Abandon and Quarantine nodes, 

respectively. In this work, the Abandon nodes 

defined the number of infected nodes but not 

infectious due to memory incapability. The 

Quarantine nodes are infectious memory-

efficient nodes that are isolated to avoid attack 

propagation. The Schematic diagram of the 

model is shown in Figure 2; given a population 

of nodes as N over a series of time interval t, a 

set of compartments representing possible 

node states will emerge. 

The rate of nodes change from one state to 

another is dynamically represented using a 

system of differential equations.  

The susceptible state is defined as a state in 

which nodes are not infected but vulnerable to 

infections at a given time. The susceptible 

nodes get infected and converted to infectious 

states by contacting the malware packets. The 

infected nodes are carrier nodes affected by the 

malware and capable of transmitting the 

infections to the susceptible nodes in contact 

using an infection parameter. Infected nodes 

with low memory space and cannot transmit 

the copy of the malware packet to the 

neighbouring can be transferred to an 

abandoned state based on the abandoned rate. 

However, infected memory-efficient nodes 

capable of transmitting malware packets can be 

transferred to the Quarantine state using the 

isolation parameter. Then the fractions of the 

susceptible, infectious, Abandoned nodes and 

Quarantine nodes make up the total number of 

nodes in the population. T can be expressed 

mathematically in equation (1). 

                   N
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                                       (1) 

Based on the flow diagram of the model as demonstrated in Figure 2, the model can be defined 

mathematically using a system of differential equations as can be expressed in equation (2). 

 

 

         Figure 2. Flow Diagram of the proposed SIAQ model 
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Where 

)(tS   the total number of susceptible nodes in the network  

)(tI    the total number of infectious nodes in the network 

)(tA  the total number of abandoned infected nodes in the network 

)(tQ   the total number of Quarantine nodes 

     number of new nodes added to the network system 

      infection rate 

     Abandon rate of infected nodes  

    rate of returning abandoned nodes to the susceptible class by removing the malware packet      

     rate of isolating infectious nodes.  

   Rate of transferring forensic nodes to the susceptible class due to data loss due to interaction 

with other nodes. 

    nodes leaving the system due to mobility or other activities.   

 

Subsequently, the attacker will expand its 

attack surface to the susceptible sensor nodes 

by attacking a particular node and successfully 

getting infected. Nodes in the susceptible class 

S can be lost due to coming in contact with the 

malware packet. The infection of nodes can be 

achieved via random scanning of all the sensor 

nodes in the IoT network. Consequently, the 

susceptible nodes will transit to the infectious 

state I. Therefore, infected nodes can be 

identified from the I state and transits to the 

Quarantine state Q at a probability complement 

of the abandon rate )1(  −= . At the 

Quarantine state, nodes can similarly lose their 

data due to interaction with other nodes and 

return to the susceptible class S at the rate of 

. Finally, at every stage of the model, there is a 

probability  of removing a node (s) due to 

mobility and other influential factors that affect 

WSN. 

Nodes Population and Scoping 

WSN consists of small sensing devices with 

constricted bandwidth, power, and 

computational capabilities. In this regard, the 

sensing coverage per sensor node to determine 

the communication range based on the radius 

of the sensor. The nodes population is initially 

deployed in a small area with all the sensor 

nodes considered susceptible. We consider the 

infection to randomly scan all the susceptible 

nodes within the coverage of the infected node. 

We similarly assume that the population 

consists of a dynamic number of nodes with 

removing and addition of nodes back to the 

network. 

Infection Rate 

The worm self-propagation starts with the 

infection process, where the malware uses 

different scanning methods to capture large 

number of targets to be infected. In this regard, 

the infected nodes can propagate and execute 

the attack on the remaining susceptible nodes. 

Hence, the infection rate is the ratio of the 

number of infected nodes to the number of 

susceptible nodes multiplied by the contact rate 

at a given time. It can be expressed equation(3) 

econtactrat
tS

tI
=

)(

)(


                                    

(3) 

Abandon Rate 

Hejazi and Ferrari (2018) denote ζm ∈ [0, 1] as 

the fraction of the remaining free memory in 
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sensor nodes during propagation of sensed data 

and its coefficient can thus be expressed in 

equation (4) 
                    

 

              m

m
m

i

r
=

                                          
(4) 

Where mr is the remaining free memory of each 

node and mi is the initially available memory? 

Hence, the probability of abandoning an 

infected node   depends on the attacker's size 

of the malware packet installed on the infected 

node and the fraction of the remaining free 

memory of the infected node during 

propagation. The processing of malware 

packet and the abandon probability rate can be 

mathematically expressed in equations (5) and 

(6), respectively: 

 

Malwareprocess = Size ×𝜁𝑚                                             

(5) 

 

Abandon rate 
ocessMalwarePr

1
=                     (6)  

Isolation Rate 

The rate of isolating infectious memory-

efficient nodes depends largely on the sensor's 

capability to process and propagate the 

malware packet. The malware packet can 

spread with the normal data to the neighboring 

nodes in a worm attack. Therefore, the 

expected infected memory-efficient nodes that 

propagate the malware due to their memory 

capabilities can be isolated to the Quarantine 

class. Therefore, the isolation   is the 

probability complement of the abandon rate 

as adopted from Ibrahim (2021) and is given 

using the equation (7). 

  

Isolation rate   −=1                             (7) 

The isolation rate subjects infected memory-

efficient nodes to a sleep mode; they cannot 

transfer data or malware packets to the 

neighbouring nodes. 

Data Loss Rate 

Certain operations in WSN associating one 

node to another can result in data consumption 

among neighbouring nodes. Hence, nodes can 

be isolated in quarantine class but can lose their 

data and return to the susceptible class S. We 

defined the data loss rate  using equation (8) 

due to their associated services. 

 

δ = number of packet sent × Contact rate.                     

(8) 

                                                                                                       

Stability Analysis of the model  

The analysis techniques utilized mostly in 

malware propagation works are based on 

stability analysis of the proposed model 

(Gardner et al., 2017). The concept generally is 

to understand the steady-state effects of 

different parameters in the models. To achieve 

this, the basic reproduction number R0 which 

determines the number of secondarily infected 

nodes produced by a single (typical) infection 

in a completely susceptible population, can 

first be obtained. R0 often serves as a threshold 

parameter that predicts whether an infection 

will spread in a WSN. To achieve this, we 

check the stability of the model based on 

worm-free and worm-endemic equilibrium 

states. 

Basic Reproduction Number R0  

To generate R0 from the mathematical equation 

model (2), we considered states consisting of 

the infectious parameter, including the 

following equations. 

)()()(

)()()()(

tAtI
dt

dA

tItItS
dt

dI





+−=

++−=

 

Next is to determine the infectious and transition parameters in matrix form. We denote F andV as 

matrices for the infectious and transition parameters, defined in equations (9) and (10), respectively. 

                                                                          

                                                     
 SIF =

                                                      (9) 
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Taking derivatives of F and V for I and A, F and V can be respectively transformed in equations 

(11) and (12). 
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Obtaining 1−V  as in equations (13) and (14) 
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Multiplying F and 
1−V  obtained equation (15)  
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Then the basic reproduction number R0 is the largest eigenvalue of equation (15) which can be 

expressed in equation (16). 
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Considering the worm free equilibrium state when I(0)=0, A(0)=0, and Q(0)=0, then S(0) =



, then 

the basic reproductive number is given in equation (17). 

                                                                       
)(

0




++
=R

                                      (17) 

 

If the value of R0 < 1, the worm propagation 

will be eliminated within the WSN. The 

proposed model will stabilise at worm-free 

equilibrium. Otherwise, if R0 > 1, the worm 

will propagate consistently within the WSN 

and the proposed model will stabilize at worm-

endemic equilibrium. 

 

 

Worm-free equilibrium stability state  

To determine the system stability at a worm-

free equilibrium state, we will assume ;0)( =tI  

that no worm attack exists on the network, 

meaning the entire network nodes are 

susceptible. And all other states ;0)0( =A and

0)0( =Q  are taking to be zero. Then, the 

system can be expressed as in equation (18). 
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Substituting 
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0,0,0,



QAIS into (18), we will have the matrix solution of equation (19). 
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Next is to determine the jacobian matrix of equation (19), and expressed in equation (20). 
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From equation (20), we have  −=1 , )(2  +−= , )(3  +−=  and 



 =4 . Hence for the 

eigenvalue, 321 ,,  are all negative values indicate that the worm free-equilibrium is locally 

asymptotically stable 



=)0(S . However, 4 , the system can only be stable for the eigenvalue if 

otherwise



=)0(S  remain unstable. 

Worm-endemic equilibrium stability state  

To assess the stability of the model at worm-endemic equilibrium state, it is assumed that ItI =)( , 

meaning infected nodes exist in the network. In this case 
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next is to substitute the values into equation (18) and determine the Jacobian of the matrix, which  

can be expressed in equation (21). 
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Similarly, from the matrix of equation (21), all the eigenvalues have negative values. It follows that 

the worm-endemic equilibrium is locally asymptotically stable for all the values I .  
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Numerical Simulation 

To assess the proposed SIAQ model, a 

numerical simulation is used to analyse the 

dynamic changes in worm propagation by 

varying model parameter values. The 

simulation was first to ascertain the worm-

endemic equilibrium state and then evaluate 

the proposed model in mitigating worm 

propagation at a worm-free equilibrium state. 

Simulation at worm-endemic equilibrium 

State 

To simulate the dynamic worm propagation at 

worm-endemic equilibrium state, we chose a 

parameter values in such a way that R0 >1. 

Therefore, our parameter values are set   =7,

 =0.106, =0.075, =0.06, =0.1  =1- 

and =0.295, contact rate=0.07/hr with 

malware packet size=50mb, average sensor 

nodes remaining memory rm = 20mb and 

corresponding initial memory size= 100mb. 

Then the value of our R0=1.8324>1. With the 

initial condition given as (S(0)=2.5, I(0)=3.75, 

A(0)=0.025, Q(t)=4.0)(Khanh, 2016). 

 

Simulation at worm-free equilibrium State 

In this section, the simulation evaluates the 

proposed SIAQ model and compares the 

performance with the SIQR model 

(Khanh,2016) in mitigating worm propagation. 

As such, we set our parameters =3,  =0.106,

 =0.075, =0.06,  =0.1,  =1-  and 

=0.301 with malware packet size=50MB, 

average remaining memory size rm=20MB and 

corresponding initial memory space of the 

sensor nodes ri=100MB. Then the value of our 

R0=0.8133<1 at a contact rate =0.0578/hr , 

close to that of SIQR model R0=0.8138<1 

(Khanh, 2016) with the initial condition 

(S(0)=1.5, I(0)=2.75, A(0)=1.15, Q(t)= 0.01). 

 

Results 

Based on the simulations conducted, the results 

of the simulations will be categorized into 

worm-endemic equilibrium and worm-free 

equilibrium states. 

Result at worm-endemic equilibrium state 

The result of the simulation conducted at the 

worm-endemic equilibrium state is shown in 

Figure 3. 

 
Figure 3. SIAQ model: Dynamic propagation at worm-endemic equilibrium state. 
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The result shows that the SIAQ model has 

suppressed the number of infectious nodes I(t) 

(red line) from the initial 3.75 nodes to 1.5 

nodes. This is due to isolating some of the 

infectious nodes to quarantine class Q(t)(dotted 

blue line). Also, while suppressing the 

propagation over time, the number of 

susceptible nodes increases S(t) (blue line). 

This is due to the increase in nodes interaction 

while abandoning a few noninfectious nodes 

A(t) (black line) due to the attack's inability to 

transmit. However, as can be seen, the number 

of infectious nodes raises again for the 

remaining hours. The result justified our 

analytical findings with the basic reproduction 

number R0=1.8324>1, the worm will spread 

persistently in a WSN. 

Result at worm-free equilibrium state 

The simulation results show that the worm 

infectious dies out from the WSN for both the 

proposed SIAQ and SIQR models 

(Khanh,2016), as indicated in Figures 4 and 5, 

respectively. As can be observed, the 

infectious nodes I(t) (red line) approaches zero 

as →t . This shows that the worm attack will 

not persist in WSN, which justifies our 

analytical finding that the worm attack will be 

eliminated with the basic reproduction number 

R0<1. Therefore, both the proposed SIAQ 

model and SIQR model satisfied the condition 

for stability. 

 
Figure 4. Proposed SIAQ Model: Dynamic propagation at worm-free equilibrium state 
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Figure 5. SIQR Model: Dynamic propagation at worm-free equilibrium state 

 

For evaluation purposes, we perform the 

simulation on many susceptible nodes S(t) in 

WSN. For an increasing number of susceptible 

nodes from 1.5 to 20 nodes, other parameters 

remain constant. That is with initial condition 

(S(0)=20, I(0)=2.75, A(0)=1.15, Q(t) = 0.01) at 

contact rate =0.77/hr, the proposed SIAQ 

model outperforms previous SIQR model in 

mitigating worm propagation as shown in 

Figure 6. 

               
Figure 6. Evaluation of the proposed SIAQ model with SIQR 
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The result shows that the proposed SIAQ 

model (blue line) suppressed the worm 

secondary infectious nodes to limit at 4.0 nodes 

at peak. Contrary to the previous SIQR model 

(red line) that suppressed the worm secondary 

infectious nodes to 10 nodes at peak. In this 

regard, the proposed SIAQ model limit the 

infectious nodes to 4 nodes while SIQR model 

limit the infectious nodes to 10 nodes. Hence, 

the performance of the proposed SIAQ model 

against SIQR is calculated below. 

 

 percentage = ((10-6)/10)*100= 40% 

 

However, in both the proposed SIAQ and 

SIQR models, the infectious nodes are 

eliminated from the network after reaching the 

peak values. 
 

Discussion 

Previous work emphasized WSN 

characteristics to model the dynamic 

propagation of worm attacks. This work 

considers WSN characteristics and the 

constraint nature of the sensor device itself. 

With the constraint nature of the energy and 

memory capability of the sensor nodes, it is 

paramount to consider both the energy and 

memory efficiency of the sensor nodes in 

dealing with worm attacks. Consequently, with 

the proposed SIAQ model that focuses on the 

isolation of infectious memory-efficient nodes, 

it was demonstrated that the model could 

dynamically model the propagation of worm 

attacks at both the worm-endemic and worm-

free equilibrium state. Also, from our findings, 

the proposed SIAQ model outperforms the 

SIQR model in mitigating worm propagation at 

large-scale WSN deployment. 
 

Conclusion 

Worm and its propagation within WSN remain 

a challenging issue in a security domain. 

Previous approaches engaged various 

parameters to dynamically model the process 

and mitigate the propagation of worms in 

WSN. However, the constrained nature of 

sensor nodes has not given due to consideration 

in mitigating the menace. Consequently, in this 

work, a novel SIAQ model was proposed to 

isolate infectious memory-efficient nodes to 

mitigate worm propagation. The SIAQ model 

has effectively decreased the infectious peak 

value while mitigating worm propagation. At a 

worm-free equilibrium state, the proposed 

SIAQ model outperforms the previous SIQR 

model to suppress the number of secondary 

worm infections in a large-scale WSN 

deployment. Consequently, the proposed 

model can serve as a basis for assisting the 

planning, design, and defence of such networks 

from the investigator's point of view. To 

effectively enhance the efficiency of the 

proposed model, it should further incorporate 

energy and other sensor parameters as a basis 

for isolating the infectious nodes. 
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